Oxford A Level Sciences

AQA Chemistry

27 Aromatic chemistry Practice questions

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Marks \& Guidance \\
\hline 1 \& \begin{tabular}{l}
conc \(\mathrm{HNO}_{3}\) \\
conc \(\mathrm{H}_{2} \mathrm{SO}_{4}\) \\
\(\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}\) \\
or \(\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}\) \\
or \(\mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}\) \\
Electrophilic substitution
\end{tabular} \& \begin{tabular}{l}
1
1 \\
1 \\
1 \\
1 \\
3
\end{tabular} \& \begin{tabular}{l}
If both 'conc' missing you can score one for both acids. \\
This can also be done in two equations. \\
Benzene can also be written as \(\mathrm{C}_{6} \mathrm{H}_{6}\) and nitrobenzene as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\). \\
One mark is for the arrow from within hexagon to N or to the + on N (M1). \\
The 'horseshoe' must not extend beyond C 2 to C 6 . (M2) \\
Mark 3 is for the arrow into the hexagon (M3).
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
\[
\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3}^{+} \mathrm{CO}+\mathrm{AlCl}_{4}^{-}
\] \\
Electrophilic substitution
\end{tabular} \& 2
1
3 \& \begin{tabular}{l}
One mark is for the correct reactive species and one for the equation. \\
This cannot be F/C acylation. \\
Horseshoe must not extend beyond C2 to C6. \\
The + must be on the C of \(\mathrm{RC}^{+} \mathrm{O}\).
\end{tabular} \\
\hline 3 \& \begin{tabular}{l}
\[
\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3}^{+} \mathrm{CO}+\mathrm{AlCl}_{4}^{-}
\] \\
Electrophilic substitution
\end{tabular} \& 2

3

1 \& | There is no mark for the acylium ion here. The mark is for the aluminium chloride and the second mark is for the balanced equation. You could have FeCl_{3}. |
| :--- |
| The position of + on electrophile can be on O or C. |
| The M1 arrow from within hexagon to C or to + on C . The + must be on C of RCO. |
| This is not F/C acylation. |

\hline
\end{tabular}

AQA Chemistry

27 Aromatic chemistry Practice questions

4 (a)	$\mathrm{CH}_{3} \mathrm{CO}^{+}$	1	
4 (b)		3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of $\mathrm{RC}^{+} \mathrm{O}$.
5 (a)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} \mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CClO}$ OR propanoyl chloride OR $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$ OR propanoic anhydride penalize contradiction in formula and name, e.g., propyl chloride AlCl_{3} or FeCl_{3} or names $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}$ Allow RCOCl in equation but penalise above	1 1	could score in equation could score in equation allow + on C or O in equation
5 (b)		3	M1 arrow from circle or within it to C or to + on C Horseshoe must not extend beyond C 2 to C 6 but can be smaller + not too close to C 1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure Ignore base removing H in M3
5 (c)	Tollens or ammoniacal silver nitrate	1 1	penalise wrong formula
6 (a)	Benzene is more stable than cyclohexatriene $\begin{aligned} & \text { Expected } \Delta H \ominus_{\text {hydrogenation }} \text { of } \mathrm{C}_{6} \mathrm{H}_{6} \text { is } 3(-120) \\ & =-360 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ Actual $\Delta H \Theta_{\text {hydrogenation }}$ of benzene is $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (less exothermic) or $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ different from expected Because of delocalisation or electrons spread out or resonance	1 1 1	more stable than cyclohexatriene must be stated or implied If benzene more stable than cyclohexene, then penalise M1 but mark on If benzene less stable: can score M2 only Allow in words e.g. expected $\Delta H \ominus_{\text {hydrog }}$ is three times the $\Delta H \oplus_{\text {hydrog }}$ of cyclohexene Ignore energy needed

27 Aromatic chemistry Practice questions

AQA Chemistry

\begin{tabular}{|c|c|c|c|}
\hline 6 (b) \& \begin{tabular}{l}
Conc \(\mathrm{HNO}_{3}\) \\
Conc \(\mathrm{H}_{2} \mathrm{SO}_{4}\)
\[
\begin{aligned}
\& 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\& \mathrm{OR} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\] \\
OR via two equations
\[
\begin{aligned}
\& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \\
\& \mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]
\end{tabular} \& 1
1
1

3 \& | If either or both conc missing, allow one; this one mark can be gained in equation |
| :--- |
| Allow + anywhere on $\mathrm{NO}_{2}{ }^{+}$ |
| M1 arrow from within hexagon to N or + on N Allow $\mathrm{NO}_{2}{ }^{+}$in mechanism horseshoe must not extend beyond C 2 to C 6 but can be smaller |
| + not too close to C1 |
| M3 arrow into hexagon unless Kekule |
| allow M3 arrow independent of M2 structure ignore base removing H in M3 |
| +on H in intermediate loses M2 not M3 |

\hline 7 \& $$
\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right]^{+}
$$

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \\
& {\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right]^{+}+\mathrm{AlCl}_{4}^{-}}
\end{aligned}
$$ \& 1

1

3 \& | You can gain the electrophile mark from the equation if not stated separately. Therefore the correct balanced equation is worth 2 marks. In the equation, the position of the + can be on O or C or outside square brackets, however you do not need to show the square brackets. |
| :--- |
| The arrow for M1 must be to C or to the + on C . |
| The horseshoe should extend from C2 to C6 only. |

\hline 8 \& | Cyclohexane evolves $120 \mathrm{~kJ} \mathrm{~mol}^{-1}$ |
| :--- |
| Therefore expect triene to evolve $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $\begin{aligned} & \text { or } 3 \times 120=360 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & 360-208=152 \mathrm{~kJ} ; \end{aligned}$ |
| Benzene lower in energy / more stable; due to delocalisation; | \& 4 \& | Cannot estimate 150 kJ , you must use the values in the question. Therefore 152 kJ can score first 2 marks in this part. |
| :--- |
| Any mention of 'bond breaking needing energy' will not score marks. |

\hline 9 (a) \& nitric acid and sulfuric acid \& 1 \&

\hline 9 (b) \& explosives / dyes / fibres / pharmaceuticals \& 1 \&

\hline 9 (c) (i) \& $$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \\
& \left.\rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2}\right)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 1 \\
& 1
\end{aligned}
$$
\] \&

\hline 9 (c) (ii) \& it accepts a pair of electrons \& 1 \&

\hline 9 (c) (iii) \& electrophilic substitution \& 1 \&

\hline
\end{tabular}

