AQA Chemistry

Question number	Answer	Marks	Guidance
1	conc HNO ₃ conc H ₂ SO ₄	1	If both 'conc' missing you can score one for both acids.
	$HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ or $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_2O + HSO_4^-$		This can also be done in two equations.
	or $HNO_3 + H^+ \rightarrow NO_2^+ + H_2O$	1	
	\bigcirc + HNO ₃ \longrightarrow \bigcirc + H ₂ O	1	Benzene can also be written as C_6H_6 and nitrobenzene as $C_6H_5NO_2$.
	Electrophilic substitution	1	
	+ NO ₂ + NO ₂	3	One mark is for the arrow from within hexagon to N or to the + on N (M1). The 'horseshoe' must not extend beyond C2 to C6. (M2) Mark 3 is for the arrow into the hexagon (M3).
2	CH ₃ COCI + AICI ₃ → CH ₃ ⁺ CO + AICI ₄ ⁻	2	One mark is for the correct reactive species and one for the equation.
	Electrophilic substitution	1	This cannot be F/C acylation.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of RC ⁺ O.
3	CH ₃ COCI + AICI ₃ → CH ₃ ⁺ CO + AICI ₄ ⁻	2	There is no mark for the acylium ion here. The mark is for the aluminium chloride and the second mark is for the balanced equation. You could have FeCl ₃ . The position of + on electrophile can be on O or C.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	The M1 arrow from within hexagon to C or to + on C. The + must be on C of RCO.
	Electrophilic substitution	1	This is not F/C acylation.

AQA Chemistry

27 Aromatic chemistry Practice questions

4 (a)	CH ₃ CO ⁺	1	
4 (b)	$ \begin{array}{c} $	3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of RC ⁺ O.
5 (a)	CH ₃ CH ₂ COCI OR CH ₃ CH ₂ CCIO OR propanoyl chloride OR (CH ₃ CH ₂ CO) ₂ O OR propanoic anhydride penalize contradiction in formula and name, e.g., propyl chloride	1	could score in equation
	AlCl ₃ or FeCl ₃ or names	1	could score in equation
	$CH_3CH_2COCI + AICI_3 \rightarrow CH_3CH_2CO^{\dagger} + AICI_4^{-}$ Allow RCOCI in equation but penalise above	1	allow + on C or O in equation
5 (b)	$ \begin{array}{c} \stackrel{\text{M1}}{\bigcirc} \\ \stackrel{\text{C}}{\bigcirc} \\ \stackrel{\text{C}}{\longrightarrow} \\ \stackrel{\text{C}}{\longrightarrow} \\ \stackrel{\text{C}}{\longrightarrow} \\ \stackrel{\text{C}}{\longrightarrow} \\ \stackrel{\text{C}}{\longrightarrow} \\ \stackrel{\text{C}}{\longrightarrow$	3	M1 arrow from circle or within it to C or to + on C Horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure Ignore base removing H in M3
5 (c)	Tollens or ammoniacal silver nitrate	1	penalise wrong formula
6 (a)	Benzene is more stable than cyclohexatriene	1	more stable than cyclohexatriene must be stated or implied If benzene more stable than cyclohexene, then penalise M1 but mark on If benzene less stable: can score M2 only
	Expected $\Delta H_{\text{hydrogenation}}^{\ominus}$ of C_6H_6 is 3(-120) = -360 kJ mol ⁻¹	1	Allow in words e.g. expected $\Delta H_{\text{hydrog}}^{\ominus}$ is three times the $\Delta H_{\text{hydrog}}^{\ominus}$ of cyclohexene
	Actual $\Delta H_{\text{hydrogenation}}^{\ominus}$ of benzene is 152 kJ mol ⁻¹ (less exothermic) or 152 kJ mol ⁻¹ different from expected	1	Ignore energy needed
	Because of delocalisation or electrons spread out or resonance	1	

AQA Chemistry

27 Aromatic chemistry Practice questions

6 (b)	Conc HNO ₃	1	If either or both conc
6 (b)		'	missing, allow one; this one
	Conc H ₂ SO ₄	1	mark can be gained in
			equation Allow + anywhere on NO ₂ ⁺
	$2 \text{ H}_2 \text{SO}_4 + \text{HNO}_3 \rightarrow 2 \text{ HSO}_4^- + \text{NO}_2^+ + \text{H}_3 \text{O}^+$	1	7 mow 1 driywhord on 1402
	OR $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + NO_2^+ + H_2O$		
	OR via two equations $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + H_2NO_3^+$		
	$H_2NO_3^+ \rightarrow NO_2^+ + H_2O$		M1 arrow from within hexagon to N or + on N
	1121103		Allow NO ₂ ⁺ in mechanism
	H NO ₂	3	horseshoe must not extend beyond C2 to C6 but can be smaller
	$+ NO_2 \rightarrow + + + + + + + + + + + + + + + + + + $		+ not too close to C1
			M3 arrow into hexagon unless Kekule
			allow M3 arrow independent of M2 structure ignore base removing H in M3
			+ on H in intermediate loses M2 not M3
7	[CH₃CH₂CO] ⁺	1	You can gain the electrophile mark from the equation if not stated separately. Therefore the correct balanced equation is worth 2 marks.
	$CH_3CH_2COCI + AICI_3 \rightarrow$ $[CH_3CH_2CO]^+ + AICI_4^-$	1	In the equation, the position of the + can be on O or C or outside square brackets, however you do not need to show the square brackets.
	M3 arrow CCHoCHo H	3	The arrow for M1 must be to C or to the + on C. The horseshoe should
	M1 M2 COCH ₂ CH ₃ O structure		extend from C2 to C6 only.
8	Cyclohexane evolves 120 kJ mol ⁻¹	4	Cannot estimate 150 kJ, you must use the values in the
	Therefore expect triene to evolve 360 kJ mol ⁻¹ ;		question. Therefore 152 kJ
	or $3 \times 120 = 360 \text{ kJ mol}^{-1}$		can score first 2 marks in this part.
	360 - 208 = 152 kJ;		Any mention of 'bond
	Benzene lower in energy / more stable; due to delocalisation;		breaking needing energy' will not score marks.
9 (a)	nitric acid and sulfuric acid	1	
9 (b)	explosives / dyes / fibres / pharmaceuticals	1	
9 (c) (i)	$C_6H_6 + HNO_3$	1	
	\rightarrow C ₆ H ₅ NO ₂ + H ₂)	1	
9 (c) (ii)	it accepts a pair of electrons	1	
9 (c) (iii)	electrophilic substitution	1	